
S I L I C O N

aka
Security Audit Report

Humbleswap
June 6, 2022



1 Summary
Reach commissioned Ekasilicon to conduct a security audit of Humbleswap,
which comprises three dApps: triumvirate, a token swapper, and staker.
The token swapper has two variants: one which allows users to swap between
a native token and a non-native token (net-tok), and one which allows users
to swap between two non-native tokens (tok-tok). This audit considers each
variant of the token swapper separately, and so considers four dApps in total.

Humbleswap is implemented in Reach (https://reach.sh). From a single Reach
program, the Reach compiler produces each tier of the implemented dApp for
several back-end chains. The audit considered the deployable artifacts of all
four dApps generated from two Reach source files for the Algorand network.

The objective of this audit was to determine whether the high-level dApp
behaviors were preserved at the network level. This determination requires the
consideration of Algorand-specific network capabilities in conjunction with the
behavior of the dApp.

The audit was performed with the assistance of the Jade program analyzer,
which is designed specifically for the analysis of smart contracts which target
the Algorand network. Jade is developed by Ekasilicon and this development
has been supported by the Algorand Foundation; it is open source
(https://github.com/ekasilicon/jade).

Jade is built on sound static analysis techniques that are able not only to
detect the presence of a particular vulnerability but also to fully demonstrate
the absence of said vulnerability once an ostensible resolution has been
applied. Thus, within this report, claims that “the dApp traverses flow X” are

https://reach.sh/
https://github.com/ekasilicon/jade


claims that “the dApp traverses only flow X” and no adversary can craft a
transaction to cause the dApp to deviate from it.

Although Jade is built on sound static analysis techniques, its implementation
and the audit process itself still relies on human judgement and is thus
susceptible to error. Consequently, although the audit team places great
confidence in results obtained with Jade’s assistance, it can offer no guarantee
that they are unassailable. Furthermore, Jade is used to analyze specific key
facets of the smart contract’s execution. The demonstrated confinement of a
particular facet to its intended limits applies precisely to that facet and does not
say anything about other facets or the smart contract more generally.

The audit took place over the course of two and a half weeks, a timeline
enabled by the use of automated analysis with Jade.

The audit was able to formally establish two properties:

1. The deployed dApp has the same protocol flow as the source program.

2. All extended arithmetic operations are checked for overflow.



2 Scope
codebase

https://github.com/reach-sh/duoswap-core

tree

https://github.com/reach-sh/duoswap-core/tree/a70f3ed822b6a4fbc758d00d25157d595db159f0

Reach triumvirate and swapper

https://github.com/reach-sh/duoswap-core/index.rsh

triumvirate bytecode

https://github.com/reach-sh/duoswap-core/build/index.triumvirate.mjs#L2569

net-tok bytecode

https://github.com/reach-sh/duoswap-core/build/index.net_tok.mjs#L2805

tok-tok bytecode

https://github.com/reach-sh/duoswap-core/build/index.tok_tok.mjs#L2842

Reach staker

https://github.com/reach-sh/duoswap-core/staker.rsh

staker bytecode

https://github.com/reach-sh/duoswap-core/build/staker.main.mjs#L3440

The target of the audit was the Humbleswap codebase (codebase) as it exists
at tree. The focus was the relationships between (1) the source file Reach
triumvirate and swapper and the generated bytecode triumvirate, net-tok, and
tok-tok, and (2) the source file Reach staker and the generate bytecode
staker).

https://github.com/reach-sh/duoswap-core
https://github.com/reach-sh/duoswap-core/tree/a70f3ed822b6a4fbc758d00d25157d595db159f0
https://github.com/reach-sh/duoswap-core/index.rsh
https://github.com/reach-sh/duoswap-core/build/index.triumvirate.mjs#L2569
https://github.com/reach-sh/duoswap-core/build/index.net_tok.mjs#L2805
https://github.com/reach-sh/duoswap-core/build/index.tok_tok.mjs#L2842
https://github.com/reach-sh/duoswap-core/staker.rsh
https://github.com/reach-sh/duoswap-core/build/staker.main.mjs#L3440


3 Methodology
To gain comprehensive assurance about a program written in a language other
than the native bytecode of the platform on which it’s run, one must ensure
that

1. the program as written matches the intent of the developers, and

2. the meaning of the compiled artifact is faithful to original.

Because the environment model of the platform may differ than that of (the
language of) the source program, one must additionally ensure that the
compiled artifact does not permit interactions at the platform level that are not
intended at the source level. (Here, interaction is used to refer to both an
action that a contract participant takes with respect to the contract and the
particular combination of the implementation and its execution environment.)

Instantiating this schema, comprehensive assurance about a Reach dApp is
obtained by ensuring:

1. The Reach program, including declared assertions and invariants,
matches the developers’ intent.

2. The compiled artifacts are faithful to the original Reach program,
including that

a. the meaning of the program as written is preserved through
compilation and

b. the embedded assertions actually hold.



3. The compiled artifacts are secure with respect to the interactions allowed
by their respective platforms.

The Reach compiler is capable of verifying embedded assertions at the Reach
source level, in which case 2a would subsume 2b. However, it is possible to
disable this verification, in which case 2a and 2b would be considered
somewhat independently.

This audit does not deliver comprehensive assurance in the preceding sense.
(Doing so constitutes full formal verification which is extremely labor-intensive.)
However, it does address each identified aspect, in whole or in part.

Aspect 1, that the Reach dApps as written reflect the intent of the Humble
team, is established by communication with the Humble team. The primary
audit effort is devoted to establishing aspects 2 and 3 for dApp deployment on
the Algorand network specifically.

The approach to establishing these aspects is, for each dApp-derived
bytecode program, proceeds as follows:

1. Use the Jade program analyzer to construct a network-level model which
can be used both to examine network-specific behaviors and to relate to
its source Reach program.

2. Use automated analysis to extract network-level transaction schemas and
categorize them according to the effect they have on the encoded state of
the Reach source program. This categorization induces a state transition
graph which itself models the protocol flow of the program.

3. Use the state transition graph to reason about high-level flows, including
reachability of particular states and actions and protocol invariants.

The Jade program analyzer (simply Jade in the sequel) provides automated
analysis to produce the network-level model. By default, Jade produces a



naive model which is often both imprecise and intractable to construct.
However, precision and tractability can be obtained by customizing the model
constructor, in part or in full, with respect to each program—Jade is designed
to easily accommodate this customization. This custom model is the result of
an iterative process, which proceeds essentially as follows:

1. Given an analyzer specialization (i.e. a custom model constructor, initially
naive), attempt to produce the naive model of the program to assess
precision and tractability. Even if the attempt is unsuccessful, examining
Jade’s effort typically reveals a promising aspect to specialize.

2. Examine the produced model (or attempt) to identify refinements to the
specialization to account for particular program behaviors at a higher
abstraction level. By choosing the appropriate abstraction, the analysis
becomes at once more precise and requires less effort by the analyzer
(perhaps bringing the analysis into tractability, if it isn’t already). The
choice of abstraction is determined by the compilation model and the
internal logic of the program. Proceed to step 1.

Of course, the human-in-the-loop breaks at step 1 if the produced model is
sufficiently precise. Significant audit effort was devoted to devising effective
custom models which were both precise and tractable.

Even when its production is tractable, the size of a Jade-produced model
typically exceeds the size of the program. However, the form of the model is
no longer code but, essentially, a set of valid transaction schemas which
include the constraints under which valid instances can be constructed and the
external effects the transaction instance produces.

Where resources permit, the edges are summarized as a logical formula of
constraints and effects which fully characterizes the transition. With these
constraints, it is possible in principle to prove high-level invariants about dApp
behavior.



4 Disclaimer
This report does not constitute legal or investment advice. The results
documented in this report are provided for informational purposes to document
the due diligence involved in the development of only the analyzed contracts.
The report authors assume no liability for any and all potential consequences
of the deployment or use of these contracts.

This report makes no claims that its presented results are fully comprehensive
in the sense that every facet of the smart contract is covered. Furthermore,
this report concerns only one, albeit critical, component of the deployed dApp
and can therefore make no claims about the correct operation of the system it
supports. The report authors recommend using a variety of techniques to
assess a program’s fitness, including those not undertaken in the reported
audit process.

Although the tools used to perform this audit are designed and intended to
provide sound information, the possibility of human error in implementation or
utilization remains. We therefore offer confidence but no guarantee about the
claims made in this report, and again recommend the use of a variety of
techniques to increase assurance.



5 Context

5.1 OnCompletion

On the Algorand network, the OnCompletion transaction parameter dictates
which post-transaction operation is performed with respect to the contract and
the transaction sender. The operation may be to “opt in” the sender to the
contract so that it can begin interacting with it more meaningfully, to update the
contract code, to delete the contract code, or do nothing (among a few other
possibilities not relevant here). The operations to update or delete the contract
are particularly sensitive because a contract which does not constrain them
appropriately is susceptible to attacker-crafted transactions which disrupt or
hijack the dApp and its assets.

Reach can express dApps with indefinite lifetimes; such dApps which allow an
OnCompletion parameter which updates or deletes the contract code are in
error. Reach can also express dApps with finite lifetimes, which may be
manifest as the culmination of a protocol flow or as a protocol abort. These
dApps necessarily allow the contract code to be deleted (or irrevocably block
the dApp’s function) and so must permit transactions which have irrevocable
effects.

For dApps in the latter category, which are typical, it is imperative that the
preconditions for the irrevocable action be met before the action is acceptable.
A major portion of the audit effort was devoted to characterizing the
preconditions and ensuring, as much as resources permit, that the
preconditions cannot be satisfied against the intended dApp design.



In terms of the state transition graph extracted from the analyzer-produced
model, the audit considered, for each dApp, whether

1. it allows any unintended operations in non-final states (e.g. deletion), and,

2. it can arrive at the final state through any unintended means.

The sections that follow present state transition graphs which depict the final
state of the protocol flow as the removal of the dApp from the network by
definition. That is, any transition which leads to the dApp being removed from
the network reaches a final state. In addition, the state transition graphs reflect
every possible state transition (with one documented and irrelevant exception).
Thus, the results establish that no path through the state space outside the
depicted edges is possible and thus no deletion of the dApp can occur unless
as the result of the depicted state evolution.

5.2 Arithmetic Overflow

Algorand programs provide arithmetic over 64-bit unsigned integers and 64-
byte arrays interpreted as unsigned integers. However, if the result of an
operation over the former exceeds 64 bits (i.e. overflows), the program fails.
Similarly, if an arithmetic operation is attempted on a byte array larger than 64
bytes, the program fails. These behaviors mean that Algorand programs are
natively safe with respect to arithmetic overflow; there is no possibility that an
arithmetic operation could overflow and "wrap around" the result with the
program proceeding unwittingly.

This behavior, though safe, is conservative. It restricts actually-safe arithmetic
sequences that exceed bounds transitorily. To circumvent this restriction,
Reach implements 256-bit integers in Algorand programs using 32-byte
arrays. The subject dApps of this audit use these integers to carry a set of 64-
bit integers through formulas whose intermediate values exceed 64 bits but



whose final values ostensibly don’t. The dApps then extract the lower 64 bits
of the 256-bit result to propagate. If the implementation allows the lower 64
bits to be extracted without ensuring that the upper 192 bits are zero, then it
does not protect against overflow and is unsafe.



6 Results
The following sections discuss the results of the audit/tool analysis of each
dApp. The flow of each dApp is characterized by a state transition graph. The
audit/tool analysis demonstrated that no transitions other than those
represented in the graph are possible. It was also able to closely inspect the
precise conditions under which "trivial" transitions occur (representing 12 or
fewer transaction schemas); the conditions for each of these were routine and
matched expectations. Nontrivial transitions, which represent dozens,
hundreds, or thousands of transaction schemas, can be used to prove higher-
level invariants, but such results are out of the scope of this audit.
Nevertheless, the schemas underlying these transitions will be provided.

For all dApps, all non-creation transitions require . The
audit/tool analysis also verified, for all dApps, that

1. All except the delete transition require .

2. All transitions (except a single noted and accounted transition) explicitly
check their source state.

3. All 256-bit arithmetic operations are checked for overflow and all casts
from 256-bit integers to 64-bit integers are checked to ensure the value
can be represented in 64 bits.

6.1 net-tok

The symbolic analyzer (customized to this specific dApp) produced 34
transaction schemas. In the state transition graph (below), the schemas
partition with

ApplicationID = 0

OnCompletion = 0



one (1) for creation,

one (1) for transition 1,

27 for transition 2,

two (2) for transition 3,

one (1) for transition 4, and

two (2) for transition 5.

6.2 tok-tok

Because net-tok and tok-tok are the derived from the same source program
and distinguished only be their type parameterization, their high-level flow is
identical. The symbolic analyzer (customized to this specific dApp) produced
34 transaction schemas. In the state transition graph (below), the schemas
partition with

one (1) for creation,

one (1) for transition 1,

27 for transition 2,

two (2) for transition 3,

one (1) for transition 4, and

two (2) for transition 5.



6.3 triumvirate

The symbolic analyzer (customized to this specific dApp) produced 125
transaction schemas. In the state transition graph (below), the schemas
partition with

one (1) for creation,

one (1) for transition 1,

111 for transition 2, and

12 for transition 3.

6.4 staker

The symbolic analyzer (customized to this specific dApp) produced 13905
transaction schemas. In the state transition graph (below), the schemas
partition with

one (1) for creation,

one (1) for transition 1,

one (1) for transition 2,



one (1) for transition 3,

one (1) for transition 4,

two (2) for transition 5,

13,895 for transition 6, and

two (2) for transition 7.

There is one transition not reflected in the diagram which transitions each state
to itself and opts the sender into participation with the staker.



7 Conclusion
The audit documented in this report was able to characterize the precise
transaction schemas which effect the state transitions in the high-level Reach
program. So characterized, the audit showed that these schemas do not allow
attackers to travel outside the intended state flow of each dApp.

However, this description is not a claim that the dApps in question are fully
secure. In particular, the audit did not formally prove that the major transitions
(constituting between dozens and thousands of transaction schemas) protect
the protocol appropriately. But, these schemas have been formulated logically
for a higher-level prover to use for that and similar purposes.

The methodology used in this audit has been used to analyze other Reach
programs and subsequently uncover serious vulnerabilities. One reason that
no such vulnerabilities were found in this audit is that the Reach language and
compiler have been altered to prevent the previously-found vulnerabilities from
manifesting.



8 About
Ekasilicon strives to offer high-quality assurances of important smart contract
properties using a combination of versatile tools and contract-specific
abstractions. If you are in need of a custom verification solution, contact
info@ekasilicon.io to schedule a consult.

http://localhost:8000/info@ekasilicon.io

